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Abstract

Recent research concludes that wage returns to cognitive skills have declined in the

U.S. We reassess this finding. Using Yitzhaki (1996) decomposition methods, we doc-

ument the impact of shifts in the distributions of pre-labor market cognitive skills

for white men and women across two cohorts. These shifts explain the declining

estimated returns to cognitive skills, especially for men. Measurement error does not

seem to be driving this conclusion. Grappling with pre-labor market skill distribu-

tions is necessary for capturing the dynamics of returns to cognitive skills. This may

prove especially important in the future given evolving pandemic-induced changes in

skill development.
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1 Introduction

Recent dramatic declines in standardized test scores in the United States have drawn new

attention to the importance of tracking changes in the distribution of skills across cohorts (NAEP

2023). However, this is not the first time skill distributions have changed across cohorts in

recent decades (although it may well prove the most dramatic). Altonji et al. (2012) details the

changing distribution of skills across two earlier cohorts of youth in the U.S. represented in the

1979 National Longitudinal Survey of Youth (NLSY–79) and the 1997 National Longitudinal

Survey of Youth (NLSY–97). Taking as given this dynamic, several studies have concluded that

the wage returns to cognitive skills declined for young workers in the U.S. over the past 40 years

(Castex et al. 2014; Deming 2017; Ashworth et al. 2021). The accumulation of skills is at least

partly an endogenous response to their labor market returns (Card 1999), and labor market

returns can be endogenous to the distribution of skills (Acemoglu 2002). Thus, it is important

to simultaneously characterize (and study) the changing distributions of skills and the evolution

of their labor market returns across cohorts.

In this paper, we re-examine whether the labor market returns to cognitive skill have declined

across cohorts, emphasizing the relationship between the estimation of these returns and the

changing measured distributions. We use the measure of cognitive skill from Altonji et al. (2012),

which is derived from the reported scores on the Armed Forces Qualifying Test (AFQT) for the

NLSY–79 and NLSY–97 samples. The AFQT scores across the two cohorts in the NLSY data

are not directly comparable, so Altonji et al. (2012) concorded the scores across cohorts as well

as adjusted them for the age of the test takers. Because the resulting concorded scores are not

raw AFQT test scores, we refer to them as “adjusted” AFQT scores, or AAFQT.

Our analysis focuses on the changes in the measured distributions of and returns to cognitive

skill within groups. Specifically, and because Blacks and Hispanics have experienced marked

changes over time in access to dimensions of the U.S. economy and constitute significantly

smaller samples in the NLSY, we study the samples of white non-Hispanic men and white non-

Hispanic women.1 As in Altonji et al. (2012), we document that the average AAFQT scores

increased slightly over time for both white men and women. However, we focus more on the fact

that the distribution of scores widened and became more left-skewed. In particular, for both

1. For brevity, in the paper we often refer to these groups as “men” and “women.” Results for white Hispanics
and Blacks are available in Appendix E.
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groups, there is a thicker tail at the bottom of the AAFQT distribution in the younger cohort

(NLSY–97), and a “hollowing-out” in the middle of the AAFQT distribution.

We then delve into the implications of these distributional changes in measured cognitive

skills on estimates of the returns to cognitive skills, re-considering the recent findings of their

decline in the U.S. across the two NLSY cohorts (Castex et al. 2014; Deming 2017; Ashworth

et al. 2021). We estimate the univariate linear (OLS) relationship between the log of wages and

AAFQT scores. We show that the wage return to AAFQT declined for white men, confirming

previous studies (the result for white women is less clear). We then replicate previous results

demonstrating that the observed distributions of AAFQT scores for white men and women grew

increasingly left-skewed across the cohorts.

We show that this increased left-skewness is central to the finding that the wage returns

to cognitive skills have declined for white men, but does not markedly affect the wage returns

for white women. We do this by implementing Yitzhaki (1996) decompositions, tracing out the

relationship between the measured distribution of cognitive skill (AAFQT) and the estimation

of its wage return in typical log-linear (OLS) wage regressions. Then, by comparing Yitzhaki

decompositions across the two cohorts, we show that the construction of the OLS estimate in

the younger cohort (NLSY–97) places much higher weight relative to the NLSY–79 on the wages

of individuals with low levels of cognitive skills. This empirical fact has a marked influence on

changes in the estimated wage returns across cohorts for men but less on the estimate for women.

We then conduct exercises to generate counterfactual estimated wage returns. We do this by

maintaining the reported wages in each cohort in the NLSY data, but adjusting the distributions

of AAFQT scores to be the same across cohorts. This is done by a reweighting that arises

directly from the Yitzhaki decomposition. We show that when the AAFQT distribution is fixed

in each cohort to be that of the older cohort (NLSY–79), the estimated counterfactual returns

to cognitive skills for men are unchanged across the two cohorts. This starkly contrasts with

the falling returns generated by the OLS estimates. For women, on the other hand, reweighting

increases the estimated (counterfactual) decline in the wage return relative to OLS. However,

the absolute magnitude of the change for women is much less dramatic than for men.

We conclude by briefly assessing the possibility that measurement error in the AAFQT scores

could be driving the results. Unfortunately, there is no easy way to correct or account for this

source of bias, but we argue that it is unlikely to be the main driver of these findings.
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2 Data and Related Research

2.1 NLSY and the Measure of Cognitive Skills

The National Longitudinal Surveys of Youth (NLSYs) have shaped our understanding of the

U.S. labor market over the past 40 years. A large body of research has examined the experiences

of the NLSY–79, a nationally representative sample of the cohort of American youth aged 14–22

when first surveyed in 1979. A growing body of more recent research has focused on the NLSY–

97, a younger cohort aged 12 to 16 when first surveyed in 1997. The individuals in the NLSY–97

cohort are now old enough to draw comparisons between their labor market experiences in early

adulthood and those of the NLSY–79. Comparing experiences and outcomes across these two

cohorts is helping to explain and understand the evolution of the U.S. labor market . Plans are

underway for a new NLSY cohort2, which, if fielded as intended, will include a cohort of youth

markedly affected during early years of school by the Covid-19 pandemic. Measuring the skill

distributions of this new cohort and eventually studying their subsequent adult labor market

outcomes will be critical, including via cross-cohort comparisons. This is especially true given

early evidence from 13-year-olds that standardized test score declines already apparent in 2020

accelerated in 2023, alongside increased variance.3

As a measure of cognitive skills, researchers have utilized the AFQT scores of the NLSY

respondents (e.g. Neal et al. 1996; Heckman et al. 2006; Urzúa 2008). These scores are based

on specific sections of the Armed Services Vocational Aptitude Battery (ASVAB). Respondents

in both NLSY cohorts took versions of the ASVAB, although the raw scores are not directly

comparable across cohorts due to changes in test administration.4

As discussed above, Altonji et al. (2012) concord and adjust the AFQT scores across the two

cohorts, creating what we refer to as AAFQT scores. Based on a number of assumptions, they

conclude that the skill distribution widened between the NLSY–79 and NLSY–97, and that this

likely has important implications for wage inequality.5 When Altonji et al. wrote their paper,

the NLSY–97 cohort was too young to have realized wage outcomes, so conclusions about wage

2. https://www.bls.gov/nls/nlsy26.htm accessed July 14, 2023
3. https://www.nationsreportcard.gov/highlights/ltt/2023/ accessed July 14, 2023.
4. See Appendix B for more details about the ASVAB and the AFQT score.
5. There are two fundamental differences in the test format and administration across the two cohorts. First,

while the NLSY–79 respondents took a paper-based test, the NLSY–97 respondents took a computer-based test
designed using Item Response Theory (IRT), so not all respondents answered all questions. Second, the NLSY–79
respondents were ages 15–23 when they took the test, while the NLSY–97 respondents were 12–18.
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inequality remained speculative. Thus, this paper aims to enhance the existing work in this

area.

2.2 Existing Findings of Wage Returns to Cognitive Skills

Since Altonji et al. (2012), two other influential papers have used realized wages for both NLSY

cohorts to study how the early career wage returns to skills have changed across cohorts. Castex

et al. (2014) focus on estimating changes in the skill price of AAFQT. While Deming (2017)’s

primary interest is in changes in the price of measures of social skills, he also estimates changes

in the skill price of AAFQT. Both papers estimate conventional linear hedonic wage functions

where skill prices are constant across the skill distribution. Despite differences in specific choices

of sample construction and model specifications, they both find that the wage returns to AAFQT

have declined across cohorts.6

We first re-examine the findings of Castex et al. (2014) and Deming (2017). To this end, we

estimate log-linear wage equations of the form:

lnW c
i = αc + βcAAFQT c

i + ϵci , (1)

where W c
i denotes the (log) average hourly wage of individual i from cohort c (NLSY–79 or

NLSY–97) observed between the ages of 25 and 39, and ϵci is the associated error term.7

Figure 1 plots the relationship between (average) log wages and AAFQT scores. It also

displays the OLS results of estimating equation (1). Panel A shows the results for white men.

The estimated (log) wage return to an additional AAFQT point falls from 0.677 for the NLSY–

79 cohort to 0.464 for the NLSY–97 cohort, a large and statistically significant drop of 0.212.

6. Ashworth et al. (2021) estimates a dynamic structural model using data from the two NLSY cohorts. Con-
sistent with the previous findings, they conclude that returns to unobserved cognitive ability (measured in a factor
model) have declined across cohorts. Weinberger (2014) compares two samples of 12th-graders from 1972 and
1992 seven years after graduation and concludes that the returns to math score increased across those cohorts.
The samples’ characteristics and the test score’s nature might explain this distinctive change.

7. We estimate and report results from weighted least squares regressions, using the BLS custom sample weights.
With some abuse of terminology, we refer to these regressions throughout the paper as “OLS” so as not to confuse
sample weights with Yitzhaki weights discussed below, which are our key set of weights. We multiply lnW c

i by 100
in our Figures and Appendices for ease of display. In addition, we consider univariate regressions. This facilitates
the exposition of our Yitzhaki decomposition exercises, frees us from complicated issues related to concording
other covariates (e.g. social skills) across NLSY cohorts, and does not impose functional form assumptions on
the relationship between the covariates, AAFQT, and log wages. Conceptually, to add covariates linearly, one
can first residualize both lnW and AAFQT with covariates, and then apply the Yitzhaki decomposition to the

residualized l̃nW and ˜AAFQT .
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For white women, as shown in Panel B, the estimated return to an additional AAFQT point

falls from 0.830 for the NLSY–79 cohort to 0.789 for the NLSY–97 cohort. The drop is not

significant and its magnitude is much smaller than that of men.8

In the next section, we present evidence of how the measured distribution of cognitive skills

(AAFQT) has changed across cohorts. As discussed in Section 4, this is critical for understanding

the evolution of the OLS estimates displayed in Figure 1.

3 Distributional Changes in Cognitive Skills

It is well known that the wage structure widened in the U.S. labor market over the decades

encompassing the early adulthood of the NLSY cohorts (e.g. Katz et al. 1999; Card et al. 2002;

Autor et al. 2008), and employment grew rapidly not only at the highest-skill jobs but also at

the lowest-skill jobs (Autor et al. 2006; Autor et al. 2013). Much less discussed, at least in the

context of labor market outcomes, is how the underlying skill distribution–using detailed skill

measures other than education–changed over time.

Altonji et al. (2012) is an important exception. Though their focus is a composite skill

index rather than a specific skill measure, the authors note the changing distribution of AAFQT

scores and document a widening distribution of their composite skill index across the two NLSY

cohorts. Figure 2 replicates their AAFQT result for white men and women. We also report

corresponding distributional statistics. The first finding, as noted by Altonji et al., is that both

the mean and median of AAFQT scores are slightly higher in the younger (NLSY–97) cohort

for both groups.

Perhaps more strikingly, the skewness of the AAFQT distribution is much more pronounced

for the younger cohort (0.81 for white men, 0.79 for white women) than for the older cohort (0.63

for white men, 0.56 for white women). Consistent with this, the kurtosis of the distributions

also increased across cohorts for white men and women. Statistical tests comparing skewness,

kurtosis, and the overall distributions of AAFQT scores all reject nulls of no differences across

cohorts (See Appendix A Tables A.1 and A.2.).

For white men, the increasing mass of people with very low scores and the overall increase

(though not large in magnitude) in the mean and median across the cohorts together create

8. Results including covariates, reported in Appendix A Table A.3, tell largely the same story as the univariate
regressions.
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“hollowing out” in the low-to-median range of the AAFQT distribution. There is also a hollowing

out for white women, but it is driven more by gains in AAFQT scores for individuals in the

10th to 50th percentile. To our knowledge, these distributional changes in cognitive skills have

received very little attention.9 In the next section, we connect these changes to the estimated

returns to cognitive skills. To do this, we hearken back to Yitzhaki (1996).

4 The Yitzhaki Decomposition

In order to understand the underlying mechanisms behind the estimated declines in the returns

to AAFQT scores, we implement the Yitzhaki (1996) decomposition. Consider a generalization

of the (log) linear wage equation (1):

Y = E[Y |H,C] + ϵ = α(C) + β(C)H + ϵ,

where C denotes a given cohort (that has, e.g., cohort-specific skill-neutral technology) and H

is human capital.

Let BC(h) = E(Y |C,H = h) be the regression curve and bC(h) be its slope, i.e. the unit

treatment effect evaluated at h for a given C. The Ordinary Least Squares (OLS) estimate of

the linear relationship between Y and H can be expressed as:

βOLS
C =

∫
h
wC(h) bC(h) dh. (2)

Therefore, βOLS
C can be decomposed into unit treatment effects bC(h) and how they are weighted

by wC(h).

In order to highlight the specific role of skewness in the weights, we rearrange Yitzhaki’s

original formulation and write the weights as:

wC(h) =

FC,H(h)
(
1− FC,H(h)

)
σ2
C,H

 (EC(H|H > h)− EC(H|H ≤ h)
)
, (3)

9. The basic patterns of distributional change in AAFQT, including the increased left-skewness and kurtosis,
are not caused by changing correlation with the covariates such as measured of non-cognitive and social skills
Deming (2017) and education. See Appendix A Figure A.1 for the distribution of AAFQT scores residualized by
covariates.
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where FC,H(h) is the cumulative density function of H evaluated at h, σ2
C,H is the associated

variance, and EC(·) denotes the expectation. The weights, wC(h), are non-negative and solely

depend on the distribution of H given C, not on the distribution of Y . The role of Y in the

construction of the OLS estimates comes only through the unit treatment effects bC(h).

The first term in brackets in expression (3) reaches its peak when FC,H(h) = 0.5, i.e., at

the center of the distribution of H. Its contribution to the weights is fairly intuitive. But un-

derstanding the second expression in (3) is equally important. In particular, larger differences

in the conditional expectations on either side of a given h contribute more to the OLS weights.

So this dispersion is essential for driving OLS estimates. In particular, left(right)-skewed distri-

butions tend to put higher (lower) weight on h’s toward the bottom of the distribution. Thus,

when unit treatment effects bC(h) differ across the distribution of H, the weighting scheme of

the Yitzhaki decomposition plays a key role in the OLS estimate βOLS
C . If the unit treatment

effects are constant, the weights do not matter in practice.

In most empirical analyses, H is discrete; in our application, H is the AAFQT score. There-

fore, we use the discrete version of expression 2 to implement the decomposition. Specifically,

and dropping C from the notation for parsimony, we first rank observations in increasing order

of H, so h1 < h2 < · · · < hn, where n denotes the number of distinctive realizations of H. Let

Ni be the number of duplicate observations for hi and let N be the sum of all observations:

N = N1 + · · ·+Nn.
10 Then, let ∆hi = hi+1 − hi and bi = ∆ȳi/∆hi. Thus, we can think of bi as

the pairwise slope or estimated unit treatment effect and the OLS estimator can be expressed

as:

βOLS =
n−1∑
i=1

wibi, with
n−1∑
i=1

wi = 1 and wi ≥ 0 ∀i,

where the discrete weights wi can be written analogously to the continuous weights wh:

wi =
1

σ2
h

∑i
j=1Nj

N

∑n
j=i+1Nj

N

(∑n
j=i+1Njhj∑n
j=i+1Nj

−
∑i

j=1Njhj∑i
j=1Nj

)
∆hi. (4)

Finally, we decompose the OLS estimate obtained from equation (1) in each NLSY cohort

10. When weighted least squares (WLS) is utilized instead of OLS, it is straightforward to extend the Yitzhaki
decomposition. See Appendix C for details.
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as:

β79
OLS =

n−1∑
i=1

w79
i b79i and β97

OLS =
n−1∑
i=1

w97
i b97i (5)

These expressions indicate that one can examine the changing OLS returns to AAFQT scores

across the NLSY cohorts by examining whether the change is mechanically driven by changing

Yitzhaki weights, changing pairwise slopes, or both. Moreover, because the Yitzhaki weights

are only a function of AAFQT scores, we can specifically examine how much the changing

distribution of AAFQT scores between the two cohorts affects the construction of the OLS

estimates.

5 Understanding the Wage Returns to Cognitive Skills

Figure 3 plots the Yitzhaki weights by gender for each NLSY cohort.11 Given the similarities in

the AAFQT distributions for white men and women, the weights – in particular, the changes in

the weights across cohorts – are also alike between these groups.

Low AAFQT scores receive more weight for the NLSY–97 than for the NLSY–79. Looking

back at Figure 2 and noting equation (3), it is the increasing left-skewness of the AAFQT

distribution in the NLSY–97 that yields larger weights on low AAFQT scores for the NLSY–97

than for the NLSY–79. This is true for AAFQT scores up to around 140, about the 15th–20th

percentile. Beyond this region, for AAFQT scores up to about the 75th percentiles, weights are

higher for the NLSY–79. The weights are similar across the cohorts for the top quartile or so of

AAFQT scores.

Examining how the Yitzhaki weights differ across cohorts does not alone explain why, me-

chanically, the estimated OLS returns to AAFQT are lower in the NLSY–97 relative to the

NLSY–29. As is clear from equation (5), studying how the Yitzhaki weights work together

with the pairwise slopes is critical for understanding this result. Figure 4 again depicts the

(smoothed) Yitzhaki weights both each cohort, this time overlayed with smoothed pairwise

slopes (the bi’s).
12 While the weights look similar between white men and women, the slopes

11. To make the graphs more readable, we collapse AAFQT scores into bins containing three consecutive AAFQT
points. We also overlay the binned weights with local linear regression curves estimated using Locally Weighted
Scatterplot Smoothing (LOWESS) with a tricube weighting function and a bandwidth of 0.1 unless otherwise
noted.
12. A bandwidth of 0.3 is used for smoothing the pairwise slopes.
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reveal distinctive patterns.

For the sample of white men (top panel of Figure 4), the gradient of the relationship between

AAFQT and log wages remains upward-sloping and relatively constant through much of the

AAFQT distribution for the NLSY–79 cohort (except perhaps at the very top and very bottom–

places where local linear regression performs less well). This leads to what appears to be a

positive and essentially linear relationship between AAFQT and log wages for white men in the

NLSY–79.

The gradient for white men in the NLSY–97 cohort is less constant; in particular, it has

flat spots at various points in the distribution, especially for AAFQT scores in the 110 to 140

range (approximately the 5th–20th percentile). This region of AAFQT scores also displays large

weights in the NLSY–97, implying that here the lower OLS estimate of the wage return to

AAFQT is driven primarily by these flat spots in the local linear regression.

By contrast, the slopes for white women displayed in the bottom panel of Figure 4 are

characterized by a constant gradient across much of the AAFQT distribution for both cohorts.

Moreover, for much of the AAFQT distribution, the gradients between the two cohorts look

quite similar. One exception emerges for AAFQT scores between 140 to 160 points, where the

gradient is flat or slightly negative for the NLSY–97. Another exception is at the top of the

AAFQT distribution (above the 75th percentile): the gradient for the NLSY–97 flattens out

while the gradient for the NLSY–79 increases. This nonlinear pattern differs from that of white

men in the NLSY–97 cohort. As discussed in the following subsection, this result is crucial in

explaining the distinction between white women and men in the counterfactual OLS estimates.

To better understand how the different parts of the AAFQT distribution contribute to the

OLS estimates of the wage returns to AAFQT, Figure 5 displays the progressive sum of the

Yitzhaki decomposition from equation (5), starting with the lowest AAFQT score until the

entire sum is calculated (producing the OLS estimate).13

The top left panel presents the results for white men. The contributions of the lowest AAFQT

scores to the OLS estimates are not markedly different across cohorts. However, the progressive

13. For each AAFQT score hk from h1 to hn−1, we calculate and graph for each cohort c the cumulative sum of
the Yitzhaki decomposition:

k∑
i=1

wc
i b

c
i , k = 1, . . . , n− 1

We graph the progressive sum by three-point bins and use a bandwidth of 0.3 for smoothing.
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sums from the Yitzhaki decomposition begin to permanently diverge at an AAFQT score of

around 110 (5th percentile), at which point the Yitzhaki sum for the NLSY–79 cohort rises

quickly and continuously until it reaches its final level of 0.68. In contrast, the Yitzhaki sum

for the NLSY–97 stays low until around an AAFQT score of 150 (25th percentile). It then rises

quickly, only to fall again in the 160 to 180 points range before recovering and reaching its final

level of 0.46. This is (not surprisingly) consistent with Figure 4, where the flat slopes for the

NLSY–97 play a large role in depressing the NLSY–97 OLS estimate relative to the NLSY–79

estimate.

The bottom left panel of Figure 5 reports the results for white women. The Yitzhaki sums

of the two cohorts move almost in tandem and remain close to each other for much of the

AAFQT distribution, with two noticeable exceptions. First, the Yitzhaki sum for the NLSY–97

cohort stops rising when reaching around 150 points but then quickly catches up. Second, at

an AAFQT score of around 195 points (75th percentile), the Yitzhaki sums of the two cohorts

are still very close; then they diverge again. The sum for the NLSY–79 cohort continues to

rise, eventually reaching its OLS estimate level of 0.83. In contrast, for the NLSY–97 cohort, it

stays largely constant after the 195 points, before reaching its final level of 0.79. This, again, is

consistent with Figure 4, where the gradients of the local linear regression diverge between the

two cohorts at the top of the AAFQT distribution.

5.1 Counterfactual OLS Estimates

Given the different OLS wage returns to AAFQT and the changing AAFQT distributions be-

tween the NLSY–79 and NLSY–97 cohorts, we ask the following counterfactual question: Would

the OLS returns to AAFQT have changed between the two cohorts if the distribution of AAFQT

had not changed (holding wages at their observed values)? Or, equivalently: Would the OLS

returns to AAFQT have changed if the Yitzhaki weights had been held fixed across the cohorts

but the observed pairwise slopes had still been realized? To the best of our knowledge, this is

the first time the Yitzhaki decomposition has been used to consider this kind of counterfactual

comparison.

We answer this question by decomposing the observed difference between β79
OLS and β97

OLS

11



as:

β79
OLS − β97

OLS =
(
β79
OLS − β97

OLS |w79
)
+
(
β97
OLS |w79 − β97

OLS

)
,

=
∑
i

w79
i (b79i − b97i ) +

∑
i

(w79
i − w97

i )b97i . (6)

The first term in equation 6 is the counterfactual difference in the OLS estimates, holding

fixed the AAFQT distribution (and the corresponding Yitzhaki weights) at the NLSY–79 level.14

We first present the counterfactual estimates for white men. Using expression (6), the OLS

decline of 0.21 points for white men (as reported in Figure 1) can be decomposed as:

β79
OLS − β97

OLS =
(
0.677− 0.689

)
+
(
0.689− 0.464

)
(7)

= −0.012 + 0.225

The first term is the counterfactual change in returns holding the Yitzhaki weights at NLSY–

79 levels, a counterfactual that finds for white men that the returns to AAFQT scores stayed

basically unchanged across the cohorts (an increase of 0.012 points). This finding highlights

the critical role of the changing composition of AAFQT scores in the narrative that there has

been a decline in the return to cognitive skills. When we use the weighting structure generated

by the AAFQT distribution in the older cohort (NLSY–79) to calculate the (linear) returns to

cognitive skills, we find no evidence that the returns have declined for white men.

We gain further insight into the mechanics behind this by again graphing cumulative contri-

butions, this time comparing the counterfactual cumulative contributions for NLSY–97 (0.689)

to the NLSY–79 OLS estimate (0.689). This is graphed in the top right panel of Figure 5. In

contrast to the top left panel of OLS results, here, the counterfactual NLSY–97 sum exceeds

the actual NLSY–79 OLS sum for a good portion of AAFQT scores below the median, as the

larger NLSY–79 weights pull up the cumulative sum enough (relative to the NLSY–97 weights)

to overtake the overall NLSY–79 sum. The two sums in the top right panel end up converging

14. An alternative decomposition is:

β79
OLS − β97

OLS =
(
β79
OLS − β79

OLS |w97
)
+

(
β79
OLS |w97 − β97

OLS

)
=

∑
i

(w79
i − w97

i )b79i +
∑
i

w97
i (b79i − b97i )

The second term is the counterfactual difference in the OLS estimates, holding fixed the AAFQT distribution at
the NLSY–97 level.

12



again above around the median AAFQT score, and increase in tandem thereafter.

The counterfactual estimates for white women are in stark contrast to those of white men.

For this groups, we decompose the OLS decline (of 0.04 points), again holding the Yitzhaki

weights at NLSY–79 levels:

β79
OLS − β97

OLS =
(
0.830− 0.702

)
+
(
0.702− 0.789

)
(8)

= 0.128− 0.087

The counterfactual estimate, the first term, indicates that the wage return to AAFQT scores

went down for white women by 0.128 points. This counterfactual estimate for white women,

like that for men, deviates from the actual OLS result, but unlike for men, both the OLS and

counterfactual estimates show declines across the cohorts. The bottom right panel of Figure 5

shows that the cumulative sum for the counterfactual NLSY–97 estimate only falls below the

NLSY–79 OLS cumulative sum in the top quarter or so of the AAFQT distribution; otherwise

the two curves are very similar. More generally, the absolute magnitude of the overall difference

between the actual NLSY–97 OLS estimate and the counterfactual estimate is much smaller for

women than for men. This is entirely consistent with the results in Figure 4 and the left panels

of Figure 5, where the observed differences for women across the cohorts are much less stark

than for men.

6 The Measurement of Cognitive Skills

The interpretation of our findings hinges on the assumption that the changing AAFQT scores

reflect true changes in cognitive skill. In other words, until now we have not considered the

potential impact of measurement error in AAFQT scores.15 In this section, we briefly consider

three related questions: (1) whether AAFQT is a mismeasured proxy for cognitive skill; (2) if

so, at what stage was much of the measurement error introduced?; (3) and whether it is possible

to easily correct for measurement error.

First, the divergence and increased (left) skewness of AAFQT distribution in the NLSY–97

relative to that of the older cohort is not being driven by one specific section of the ASVAB that

15. There has long been concern about measurement error in test scores. See Griliches et al. (1972) for an early
treatment.
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Altonji et al. (2012) used to create AAFQT. Instead, as we show in Appendix A Figure A.2, it

appears to some degree in all four parts of the AAFQT. No individual section of the AAFQT

appears anomalous.

Second, the change does not seem to be a direct artifact of the concordance of the different

test formats across the two ASVAB administrations. Segall (1997) documents the concordance

process. We discuss the details of this process in Appendix B. While there are some anomalous

aspects to the scores in the NLSY–97 cohort, Appendix B explains that they existed in the

scores before any concordance was performed.

All told, to the extent that there may be measurement error in the AAFQT scores in the

NLSY–97 that drive changes across cohorts, it seems to be present in all the original AFQT test

score results and is not a function of adjustments made to concord the test scores across the

cohorts.

For any measurement error in AAFQT scores that does exist, one could still potentially

correct for it in the estimate of the returns to cognitive skill. Motivated by measurement error

concerns, Castex and Dechter (2014) estimate two-staged least squares regressions in some of

their analyses, using SAT scores as an instrument for AAFQT scores. However, AAFQT scores

in the NLSY–97 are derived from “Item Response Theory” (IRT) models, and, as pointed out

in Schofield (2014)) and Jacob et al. (2016), measurement error is non-classical for IRT-based

test scores.16 Thus, simple IV does not work. One alternative approach is the “mixed effects

structural equations” method in Junker et al. (2012). But implementing this requires data on

the responses of individual test-takers to each question in the ASVAB and these are unavailable

for the NLSY–97.

In the end, we do not have enough information to reach a definitive conclusion about whether

the changing distribution of AFQT scores–and thus, AAFQT scores–is subject to measurement

error. We also do not have an obvious method to correct for measurement error. But there are

two pieces of evidence that suggest that measurement error alone cannot be driving estimates

of changing cognitive returns across the cohorts.

First, to the extent that AAFQT scores are mismeasured, this measurement error should

affect both white men and women in the NLSY samples. Indeed, this could explain the consistent

16. In Appendix B Figure B.2 we plot the standard errors of the estimated IRT scores. The errors seem to be
oddly large for low scores in the NLSY–97, suggesting some underlying issues with the IRT model used for the
NLSY–97. We thank Dan Black for pointing this out.
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shifts in the AAFQT distributions across cohorts for both men and women. But if measurement

error is present in the same form for men and women, there is no clear reason that it should

differentially affect the changes in estimated returns to cognitive skill across men and women

that we observe.

Second, if measurement error in the construction of AFQT is driving the changing AFQT

(and AAFQT) distributions across cohorts, it should be unique to AFQT tests. But this is not

the case. We generate additional evidence from two widely-used longitudinal data sets from the

National Center for Education Statistics (NCES), the National Education Longitudinal Study of

1988 (NELS:88) and the Educational Longitudinal Study of 2002 (ELS:02). The cohorts in these

data are different than those in the NLSY cohorts–the NELS:88 sample is about 7–11 years older

than the NLSY–97 and the ELS:02 sample is about 1-5 years younger than the NLSY–97. But

interestingly, when we plot 12th-grade math scores for these two samples, we also find increasing

left-skewness and kurtosis for white men and for white women across the cohorts.17 This provides

additional suggestive evidence that the changing AAFQT score distributions across cohorts are

not driven by something anomalous in the NLSY data, and in particular not driven solely by

measurement error in AAFQT scores.

7 Conclusion

Understanding the labor market returns to education and skills has been critically important in

empirical labor economics (Becker 1964). This process is facilitated by a growing availability of

datasets, such as the NLSY, that contain measures of both labor market outcomes and different

dimensions of skills.

Using the (in our view, under-appreciated) Yitzhaki decomposition in various ways, we

demonstrate how one can understand the mechanics behind changing estimated returns to

AAFQT scores across two NLSY cohorts of white men and women. Of particular substan-

tive empirical importance, we show that for white men in the NLSY, the estimated decline in

the return to AAFQT scores critically depends on changes in the distribution of AAFQT scores

between the two cohorts and in particular on the widening (and increased left-skewness) of the

17. Unlike for the NLSY cohorts, we find no evidence that wage returns to math scores decreased from the
NELS:88 to the ELS:02 for men or women. This is consistent with Weinberger (2014) who compares NELS:88 to
an earlier NCES dataset. See Appendix D. This is additional evidence of the fragility of the narrative of declines
in returns to cognitive skill
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AAFQT distribution in the NLSY–97.

To the extent that returns to cognitive skills did decline for the white men in our sample, the

Yitzhaki weights and the accompanying unit slopes show that they did so only at the lower part

of the AAFQT distribution. In contrast, the returns to AAFQT for white women are relatively

constant across the cohorts, so changes in the AAFQT distribution for these women did not affect

the estimated returns much. Assuming that the changes in the AAFQT distribution reflect real

changes in cognitive skill, and assuming the resulting estimates of wage returns are also mostly

correct18, it is natural to contemplate the underlying economic reasons behind them. This is

difficult. From a theoretical perspective, any economic model that seeks to rationalize the results

for changing wage returns to cognitive skill should not focus solely on the determinants of wage

returns (such as changing technology on the demand side or changing labor market experience

on the supply side) but also should address how and why the distributions of cognitive skill

are affected by underlying economic drivers of skill investment. But practically, the NLSY

samples are small–there are between 1400 and 2200 people in each of the four subgroups in our

analysis. This severely limits possibilities for using the NLSY to test theories that endogenize

both heterogeneous skill investment and labor market returns.

18. We emphasize, however, that our discussion throughout the paper and in Appendix D suggests that the
results on the declining returns to cognitive skill should be treated with some skepticism.
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Prada, Marıa F, and Sergio Urzúa. 2017. “One Size Does Not Fit All: Multiple Dimensions of

Ability, College Attendance, and Earnings.” Journal of Labor Economics.

Quester, Aline, and Robert Shuford. 2017. Population Representation in the Military Services:

Fiscal Year 2015 Summary Report. Technical report.

Sands, William, Brian Waters, and James McBride, eds. 1997. Computerized Adaptive Testing:

From Inquiry to Operation. American Psychological Association.

Schofield, Lynne. 2014. “Measurement error in the AFQT in the NLSY79.” Economics Letters.

Segall, Daniel. 1997. “Equating the CAT-ASVAB.” In Computerized Adaptive Testing: From

Inquiry to Operation. American Psychological Association.
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Figure 1: OLS Estimates of the Wage Returns to AAFQT

(a) White Non-Hispanic Men

OLS estimate NLSY-79:        0.677 (S.E.=0.035)
OLS estimate NLSY-97:        0.464 (S.E.=0.043)
Change in OLS estimates:   -0.212 (S.E.=0.055)
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(b) White Non-Hispanic Women

OLS estimate NLSY-79:        0.830 (S.E.=0.036)
OLS estimate NLSY-97:        0.789 (S.E.=0.048)
Change in OLS estimates:   -0.041 (S.E.=0.060)
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Note: In each figure, we plot the average log wages against each value of AAFQT
scores separately for the two cohorts. The wage observations are from ages 25–39.
AAFQT scores are concorded by Altonji et al. (2012). The OLS estimates and the
fitted lines are based on the univariate regression in Equation (1). See Appendix A
Table A.3 for the full regression results without and with covariates. We multiply log
wages by 100 for ease of display. BLS custom sample weights are used.
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Figure 2: Adjusted AFQT Distribution for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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  NLSY-79:   Mean = 173.3, SD = 26.0, Skewness = 0.55, p1 = 106, p5 = 124, p10 = 137, p50 = 176
  NLSY-97:   Mean = 175.4, SD = 26.2, Skewness = 0.77, p1 = 103, p5 = 122, p10 = 140, p50 = 179

Note: In each figure, we plot the density of AAFQT scores separately for the two
cohorts. AAFQT scores are concorded by Altonji et al. (2012). At the bottom of
each figure, we present distribution statistics for each cohort. See Appendix A Tables
A.1 and A.2 for a full list of distribution statistics and tests for cross-cohort changes.
BLS custom sample weights are used.
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Figure 3: Yitzhaki Weights

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the Yitzhaki weights using the formula in equation (4),
separately for the two cohorts. The binned scatterplots are created by summing up
Yitzhaki weights in each bin, which contains three consecutive AAFQT points. The
smoothed curve is created using Locally Weighted Scatterplot Smoothing (LOWESS)
with a tricube weighting function and a bandwidth of 0.1. See Appendix C for how
BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Figure 4: Smoothed Yitzhaki Weights and Local Linear Regression

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we overlay the smoothed Yitzhaki weights (right axis) with
smoothed pairwise slopes (left axis), separately for the two cohorts. The smoothed
curves are created using Locally Weighted Scatterplot Smoothing (LOWESS) with a
tricube weighting function. To make the graphs more readable, a bandwidth of 0.1
and 0.3 is used for smoothing the weights and the slopes respectively. See Appendix C
for how BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Figure 5: Cumulative Contributions to Actual & Counterfactual OLS Estimates

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we graph the progressive sum of the Yitzhaki decomposition from equation (5), starting with
the lowest AAFQT score until the entire sum is calculated (producing the OLS estimate). The top left and bottom
left panels plot the progressive sum for the actual OLS estimates of the two cohorts. The top right and bottom
right panels plot the counterfactual estimate for NLSY–97 (using NLSY–97 weights) with the actual NLSY–79
OLS estimate. We graph the progressive sum by three-point bins and use a bandwidth of 0.3 for smoothing. See
Appendix C for how BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Appendices

A Supplemental Tables and Figures using AAFQT scores and

subsections

Table A.1: Distribution Statistics of AAFQT score

White Men White Women

NLSY–79 NLSY–97 NLSY–79 NLSY–97

Mean 172.7 173.4 173.3 175.4
S.D. 29.0 29.8 26.0 26.2
Skewness 0.62 0.81 0.55 0.77
Kurtosis 2.57 3.12 2.79 3.39

p1 104 94 106 103
p5 118 113 124 122
p10 130 129 137 140
p25 154 155 156 161
p50 178 179 176 179
p75 197 196 194 194
p90 207 208 205 206
p95 210 213 210 212
p99 217 217 217 217

Test of Equal Distribution p < 0.01 p < 0.01

Note: Distribution statistics of AAFQT scores (concorded by Altonji et al. (2012))
are presented for the two NLSY cohorts, and for white non-Hispanic men and
white non-Hispanic women. BLS custom sample weights are used. For the test
of equal distributions between NLSY–79 and NLSY–97, we report p-values of the
chi-squared test.
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Table A.2: Bootstrap Results, White Non-Hispanic Men and Women

Observed difference Bootstrap Normal based
NLSY97 – NLSY79 std. err. z p-value [95% conf. interval]

White Non-Hispanic Men

Mean 0.77 0.85 0.91 0.36 -0.89 2.44
S.D. 0.82 0.57 1.44 0.15 -0.30 1.94
Skewness 0.19 0.05 3.82 0.00 0.09 0.29
Kurtosis 0.55 0.13 4.25 0.00 0.30 0.80
p1 -10 3.30 -3.03 0.00 -16.46 -3.54
p5 -5 2.34 -2.14 0.03 -9.58 -0.42
p10 -1 1.91 -0.52 0.60 -4.74 2.74
p25 1 1.86 0.54 0.59 -2.66 4.66
p50 1 1.19 0.84 0.40 -1.33 3.33
p75 -1 0.98 -1.02 0.31 -2.92 0.92
p90 1 1.06 0.94 0.35 -1.08 3.08
p95 3 0.56 5.32 0.00 1.89 4.11
p99 0 0.48 0.00 1.00 -0.95 0.95

White Non-Hispanic Women

Mean 2.09 0.75 2.79 0.01 0.62 3.56
S.D. 0.16 0.57 0.28 0.78 -0.95 1.27
Skewness 0.22 0.06 3.78 0.00 0.11 0.34
Kurtosis 0.59 0.16 3.73 0.00 0.28 0.90
p1 -3 3.40 -0.88 0.78 -0.95 1.27
p5 -2 2.59 -0.77 0.44 -9.67 3.67
p10 3 2.54 1.18 0.24 -1.97 7.97
p25 5 1.26 3.98 0.00 2.54 7.46
p50 3 1.04 2.88 0.00 0.96 5.04
p75 0 1.06 0.00 1.00 -2.08 2.08
p90 1 1.17 0.85 0.39 -1.29 3.29
p95 2 0.82 2.43 0.02 0.38 3.62
p99 0 0.97 0.00 1.00 -1.90 1.90

Note: We bootstrap 2,000 times to construct standard errors, p-values, and confidence
intervals for the cross-cohort difference in distribution statistics of AAFQT scores (concorded
by Altonji et al. (2012)). We present the results separately for white non-Hispanic men and
white non-Hispanic women. BLS custom sample weights are used.
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Table A.3: OLS estimates for White Men and Women

White Men White Women

NLSY–79 NLSY–97 NLSY–79 NLSY–97

Panel A: Univariate Regression

AAFQT 0.677*** 0.463*** 0.830*** 0.789***
[0.035] [0.043] [0.036] [0.048]

Change from NLSY–79 –0.212*** –0.041
[0.055] [0.060]

Obs 2099 1584 2191 1488

Panel B: Control for Non-cognitive & Social Skills

AAFQT 0.605*** 0.452*** 0.761*** 0.768***
[0.036] [0.043] [0.038] [0.047]

Change from NLSY–79 –0.153*** 0.007
[0.056] [0.061]

Obs 2099 1584 2191 1488

Panel C: Control for Education

AAFQT 0.404*** 0.161*** 0.437*** 0.315***
[0.042] [0.051] [0.044] [0.054]

Change from NLSY–79 –0.243*** –0.122*
[0.067] [0.069]

Obs 2099 1584 2191 1488

Panel D: Control for Non-cognitive & Social Skills & Education

AAFQT 0.363*** 0.174*** 0.406*** 0.321***
[0.043] [0.050] [0.044] [0.053]

Change from NLSY–79 –0.188*** –0.085
[0.066] [0.069]

Obs 2099 1584 2191 1488

Note: We present OLS estimates of the wage returns to AAFQT scores (con-
corded by Altonji et al. (2012)). Panel A presents results for the univariate
regression in equation (1). Panel B controls for measures of non-cognitive skills
and social skills (created by Deming (2017)). Panel C controls for the high-
est grade completed. Panel D controls for both measures of non-cognitive and
social skills, and the highest grade completed. We present results separately
for NLSY–79 and NLSY–97, and for white non-Hispanic men and white non-
Hispanic women. We also present the estimated change in the OLS estimates
across cohorts. BLS custom sample weights are used. * p < 0.10, ** p < 0.05,
*** p < 0.01.
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Figure A.1: Residualized AAFQT Distribution for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the density of residualized AAFQT scores separately
for the two cohorts. AAFQT scores (Altonji et al. 2012) are residualized by measures
of non-cognitive and social skills (Deming 2017), and the highest grade completed.
At the bottom of each figure, we present distribution statistics for each cohort. BLS
custom sample weights are used.
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Figure A.2: Adjusted ASVAB subsection scores for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the density of four ASVAB subsection scores, separately for
the two cohorts. The four subsections (Arithmetic Reasoning, Word Knowledge, Paragraph
Comprehension, and Numerical Operation) are used to create the AFQT score. We adjust
each subsection score following Altonji et al. (2012). See Appendix B for a discussion of
other versions of the AFQT score. BLS custom sample weights are used.
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B Notes on Armed Forces Qualification Test (AFQT)

This appendix describes the background and essential details of the Armed Forces Qualification

Test (AFQT) score. This is a collection of information from different sources: a manuscript

by Altonji et al. (2009), a technical bulletin by Defense Manpower Data Center (2006) which

includes several chapters from Sands et al. (1997), annual reports on population representation

in the military services (e.g. Quester et al. 2017), and the introduction on the NLSY website

(Bureau of Labor Statistics; Bureau of Labor Statistics 1992; Bureau of Labor Statistics). The

AFQT score is constructed based on multiple sections of the Armed Services Vocational Aptitude

Battery (ASVAB), a set of tests developed by the Department of Defense (DOD) for screening

military enlistees and assigning them to military occupations. Economists have long been using

the AFQT score, as well as other tests in the ASVAB, to measure skills and abilities (Neal and

Johnson, 1996; Heckman et al. 2006; Altonji et al., 2012; Prada et al. 2017). This is facilitated

by the data of the NLSY–79 and the NLSY–97, as survey respondents took the ASVAB test.

History of the ASVAB and the NLSY

The ASVAB was first introduced in 1968 and has undergone several adjustments and revisions

since. One important adjustment has been to update the norms of the ASVAB (Defense Man-

power Data Center 2006). In practice, the military sets a goal of selecting only applicants who

rank higher than X% of American youth in the national distribution of ability and skill. Dif-

ferent military branches have different qualification cutoffs, and many of them now use a cutoff

of 30%–40% for applicants with a high school diploma. Recruiters therefore need to know how

the Xth percentile youth in the national population scores on the ASVAB in order to com-

pare military applicants to this benchmark. To ensure that contemporary applicants are always

compared to an appropriate benchmark, the benchmark must be updated over time.19

In 1979, after questioning the appropriateness of using the World War II reference population

as the benchmark, the DOD and Congress decided to let the NLSY–79 respondents take the

ASVAB, and the DOD used their scores as the new benchmark for military enlistees. The NLSY–

79 served as a natural group to benchmark the ASVAB because it is a nationally representative

sample of the cohort of Americans born 1957–1964. The respondents took the ASVAB in the

19. For example, in 2015, the military services typically do not accept applicants who score in the bottom 30th
percentile in the national AFQT distribution. In addition, DOD requires that at least 60 percent of new enlistees
score at the 50th percentile or higher in the national AFQT distribution (Quester et al. 2017).
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summer and fall of 1980, following the standard ASVAB procedures. This study of benchmarking

the ASVAB using the NLSY–79 is called “Profile of American Youth (PAY–80).”

A major revision of the ASVAB occurred when it shifted from a paper-based test to a

computer-based test. The military started to implement the computer-based ASVAB on a

large scale in 1996–1997, after about two decades of research and evaluation. The NLSY–97

respondents took the computer-based test, while the NLSY–79 respondents took the paper-

based test.

In the paper-based test, all respondents received the same set of questions. In the computer-

based test, the next questions that respondents received depend on their answers to previous

questions. For example, if a respondent answered a question correctly, then the next question

becomes more difficult. This adaptive feature of the computer-based test means that different

respondents can receive different sets of questions and with different orderings. The raw count

of correct answers is therefore no longer directly comparable across respondents. Instead, item

response theory (IRT) models are used to construct estimates of ability and skill (also called

“thetas”) for each respondent of the computer-based ASVAB. These IRT estimates are supposed

to be comparable across respondents.20

Due to the test format change, the military needed a new benchmark for the computer-based

ASVAB. As the NLSY–97 respondents were 12-17 when first interviewed in 1997, and some were

deemed too young for the purpose of benchmarking military enlistees, two other nationally repre-

sentative samples were identified to complete the computer-based ASVAB during the NLSY–97

screening process. The first sample, the Student Testing Program (STP), consisted of students

who expected to be in grades 10–12 in the fall of 1997. Included were many respondents who

also participated in the NLSY–97, as well as youth who refused to participate in or were not

eligible for the NLSY–97. The second sample, the Enlistment Testing Program (ETP), was

a nationally representative sample of youth aged 18–23 as of June 1997. The ASVAB perfor-

mance of respondents in these two samples (again, which includes some NLSY–97 respondents)

was then used to benchmark the computer-based ASVAB for the military.

20. Two sections, numerical operations and coding speed, in the computer-based ASVAB are administered in a
non-adaptive format (that is, everyone answers the same questions in the same order). The scores of these two
sections are therefore not “thetas” estimated from IRT. However, the two sections are still done on computers, so
the scores are not directly comparable to the scores of the same sections but in paper format.
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Concordance of different formats of ASVAB

A practical issue coming from ASVAB’s format change is how to concord the paper-based and

computer-based test scores. This is of significant importance for the military because, ideally,

the selection criteria into the Armed Forces should be held broadly consistent before and after

the test format change. This is also extremely important for researchers because otherwise

the AFQT score and the ASVAB subsection scores, as measures of skills and abilities, are not

comparable between the NLSY–79 and the NLSY–97 cohorts (Altonji et al. 2012).

Daniel Segall, a researcher at the DOD specializing in psychometrics, developed a mapping

between the paper-based and computer-based ASVAB scores (Segall 1997). He drew a sample

of military applicants in two rounds, in 1988 (N=8,040) and from 1990 to 1992 (N=10,379).

In each round, one-third of the participants were randomly assigned to take the paper-based

ASVAB, and the other two–thirds took the computer-based ASVAB. Using the test performance

of these military applicants, Segall created a mapping to link each computer-based ASVAB

component score to a paper-based ASVAB component score. Since the computer-based ASVAB

scores (”thetas” estimated from IRT models) are continuous and the paper-based ASVAB scores

(counts of correct answers) are discrete by construction, Segall applied certain smoothing and

grouping to the score distributions in the mapping procedure. For further technical details, see

Segall (1997).

In their efforts to concord the AFQT score between the NLSY–79 and the NLSY–97, Altonji

et al. (2012) relied heavily on Segall’s mapping. Since the mapping is not publicly available, the

authors sent the computer-based ASVAB subsection IRT scores in the NLSY–97 to Segall, who

mapped the scores into paper-based scores so that they could directly be compared to the scores

of the NLSY–79 respondents. With the scores from Segall in hand, the authors adjusted for

one more important difference between the two NLSY cohorts: test-taking ages. The NLSY–79

respondents were around ages 15–23 and the NLSY–97 respondents were around ages 12–18

when they took the ASVAB. On average, ASVAB performance improves as people age, so it is

critical to address the differential test-taking ages both within and across cohorts.

To construct the mapping across ages, the authors exploited the fact that both cohorts have

a nontrivial share of respondents taking the ASVAB at age 16. Under the (somewhat strong)

assumption that a person’s ranking in the AFQT score distribution does not vary with age, the

authors mapped a person at age X (which is not 16) to the score distribution of age 16 by their
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ranking in the score distribution of age X. For example, if a youth in the NLSY–79 took the test

at age 20 and ranked the 25th percentile within the AFQT score distribution of age 20, the youth

will be mapped to have the 25th percentile score of the age-16 distribution in the NLSY–79.

This relies on the assumption that whoever at the 25th percentile in the score distribution at

age 16 will remain at the 25th percentile at age 20. Whether this rank-invariant assumption

holds remains to be analyzed and tested. More details can be found in Altonji et al. (2009).21

In Figures B.1, we graph the distribution of the original IRT-based scores (called “thetas”) for

three of the four different ASVAB sections for the NLSY–97 cohort. As a reminder, these scores

are original to the NLSY–97 data and were not further processed to concord to the 1979 cohort.

We also graph the IRT-based scores for the NLSY–79 cohort that were constructed after-the-fact

from the original paper-based tests by researchers from the Ohio State University.22

The divergence and increased skewness of scores in the NLSY–97 IRT-based scores relative

to NLSY–79 scores are visible in different sections (especially Word Knowledge and Paragraph

Comprehension) of Figures B.1, suggesting that changes in the AAFQT scores across the cohorts

do not seem to be a function of the concordance that was done to create AAFQT-equivalent

scores for the 1997 cohort. That said, it is not obvious whether the “thetas” are directly

comparable between the NLSY–79 and the NLSY–97, for at least three reasons. First, we do

not know if the IRT models and estimation methods used for the two cohorts are the same.

Second, even if the models and methods are the same, the raw data imported to the models

may still not be comparable due to the different test formats used. Third, there is a strong hint

that something is amiss in the IRT scores for the NLSY–97.

Figure B.2 plots the standard errors of the estimated IRT scores (“thetas”) for different

ASVAB sections. As pointed out in past studies (Schofield 2014; Jacob et al. 2016), “thetas”

in IRT models are more precisely estimated for the middle of the distribution, leading to a

non-classical measurement error structure with larger errors at the tails. This particular mea-

surement error issue is a feature of the IRT, generally, and not just for NLSY datasets (Jacob and

Rothstein, 2016). The error structure of the thetas in the NLSY–79 is generally symmetric, and

the standard errors are minimized toward the middle of the distribution, exactly as expected

from the IRT model. What is odd is that in the NLSY–97, the distribution of the standard

21. The adjusted AFQT score created by Altonji et al. is what we referred to as the AAFQT score in the main
text.
22. See Ing et al. (2012) for details. IRT-based scores are not available for the numerical operations section of

ASVAB in the NLSY–79.

33



errors is not symmetric nor minimized around the middle of the theta distribution.23

Different versions of AFQT score

The ASVAB has multiple sections. The AFQT score is a sum of scores from four ASVAB sections.

By picking scores from different sections, two versions of the AFQT score have been constructed

and used. The AFQT–80, probably the most widely used AFQT score, is the summation of

arithmetic reasoning (AR), numerical operations (NO), paragraph comprehension (PC), and

word knowledge (WK). The formula is AFQT–80 = AR + 0.5*NO + PC + WK.

In 1989, according to the NLS website, it was realized that the numerical operations section

had some design inconsistencies that resulted in unreliable scores (Bureau of Labor Statistics).

The DOD decided to replace numerical operations with math knowledge (MK) in the construc-

tion of the AFQT score. The new score is called AFQT–89. The formula is AFQT–89 = AR

+ MK + 2*VE. Verbal composite (VE) can be seen as a weighted average of PC and WK with

unequal weights. WK receives a higher weight because there are more questions in the WK

section.

Different studies have used different versions of the AFQT score. Neal and Johnson (1996)

used the AFQT–89 in the published version of their paper, and noted that results are similar

using the AFQT–80. Altonji et al. (2012) used the AFQT–80 and created the adjusted score

that is supposed to be comparable between the NLSY–79 and the NLSY–97. More recent studies

have been using their adjusted AFQT–80 score (Castex et al. 2014; Deming 2017). Although

Altonji et al. (2012) only did the adjustment for the AFQT–80, their method can be applied to

the AFQT–89 and/or the ASVAB subsection scores.

In the paper, we use the AFQT–80 score in order to be able to use the AAFQT scores across

the two cohorts, consistent with Altonji et al. (2012), Castex et al. (2014), and Deming (2017),

who also compare the NLSY–79 with the NLSY–97.

23. We thank Dan Black for pointing this out to us.
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Figure B.1: IRT-based ASVAB subsection scores for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the density of IRT-based ASVAB subsection scores
(“thetas”), separately for the two cohorts. The NLSY–97 scores are original to the
NLSY–97 data and not further processed to concord to the 1979 cohort. The NLSY–
79 scores are constructed after-the-fact from the original paper-based tests by re-
searchers from the Ohio State University (Ing et al. 2012). The IRT-based score for
the Numerical Operation subsection is not available for the NLSY–79. BLS custom
sample weights are used.
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Figure B.2: Standard Errors of IRT-based ASVAB subsection scores for White Non-Hispanic
Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the standard errors of the estimated IRT scores
(“thetas”) for different ASVAB sections, separately for the two cohorts. The NLSY–
97 scores are original to the NLSY–97 data and not further processed to concord to
the 1979 cohort. The NLSY–79 scores are constructed after-the-fact from the origi-
nal paper-based tests by researchers from the Ohio State University (Ing et al. 2012).
The IRT-based score for the Numerical Operation subsection is not available for the
NLSY–79. BLS custom sample weights are used.
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C Yitzhaki Decomposition with Weights

For simplicity, Yitzhaki’s decomposition formula (Proposition 1 in Yitzhaki 1996) assumes that

each value of X has only one observation. In practice, each value of X can be linked to multiple

observations in the data. As suggested by Yitzhaki (1996), all observations with the same

X should be aggregated, leading to a grouped dataset in which the outcome Y is averaged

within each value of X. In a univariate model, we can recap the original OLS estimate by

using the grouped data and weighting the grouped regression with group size. In addition, each

observation in the data can represent multiple observations in the population. It is sometimes

more appropriate to use Weighted Least Squares (WLS) with sample weights than OLS (Solon,

Haider, and Wooldridge 2015). In this appendix, we extend Yitzhaki’s formula to allow for these

two types of weights.

Following Yitzhaki’s notation, let yi and xi (i = 1, . . . , n) be observations and ranked in the

increasing order of X. An important simplification that Yitzhaki makes is that ∆xi = xi+1−xi >

0, i.e., each value of X has only one observation. Here we extend Yitzhaki’s set-up and allow

there to be duplicate observations. Let there be Ni duplicate observations for (xi, yi). Let

bi = ∆yi/∆xi be the slope of two adjacent values of X.

Like Yitzhaki (1996), we are interested in decomposing the point estimate. Given this, the

two types of weights mentioned above are both equivalent to adding duplicate observations. The

distinction between the two cases is the construction of yi. In the first case (without sample

weights), yi is the average of all Y linked to xi. In the second case (with sample weights, i.e.

WLS), yi is the weighted average of all Y linked to xi.

With duplicate observations, the sample covariance of Y and X can be expressed as:

cov(y, x) = 1
2n(n−1)

∑n
i=1

∑n
j=1NiNj (xi − xj) (yi − yj)

= 1
n(n−1)

∑n
i=2

∑i−1
j=1NiNj (xi − xj) (yi − yj)

Note that when there are no duplicate observations (Ni = 1, for alli), the expression becomes

cov(y, x) = 1
n(n−1)

∑n
i=2

∑i−1
j=1 (xi − xj) (yi − yj), which is what Yitzhaki presents in Proposition

1 (Yitzhaki 1996).

Like Yitzhaki, we substitute (xi − xj) = ∆xi +∆xi+1 + · · ·+∆xj−1 and (yi − yj) = bi∆xi+
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bi+1∆xi+1 + · · ·+ bj−1∆xj−1. After collecting like terms, we get:

cov(y, x) =
1

n(n− 1)

n−1∑
i=1


n−1∑
j=i

(N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj

+
i−1∑
j=1

(Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

∆xibi

Again, when there are no duplicate observations, the expression simplifies to cov(y, x) =

1
n(n−1)

∑n−1
i=1

{∑n−1
j=i i(n− j)∆xj +

∑i−1
j=1 j(n− i)∆xj

}
∆xibi, as in Yitzhaki (1996).

Similarly, we can get the expression for cov(x, x):

cov(x, x) =
1

n(n− 1)

n−1∑
i=1


n−1∑
j=i

(N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj

+
i−1∑
j=1

(Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

∆xi

We can then write down the OLS/WLS estimator as a weighted average of bi:

˜bOLS/WLS =
cov(y, x)

cov(x, x)
= wibi, where

n−1∑
i=1

wi = 1

where the weight wi is:

wi =

{∑n−1
j=i (N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj +

∑i−1
j=1 (Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

}
∆xi∑n−1

k=1

{∑n−1
j=i (N1 + · · ·Nk) (Nj+1 + · · ·+Nn)∆xj +

∑k−1
j=1 (Nk+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

}
∆xk

The numerator of wi can be written equivalently in a more intuitive expression: i∑
j=1

Nj

 n∑
j=i+1

Nj

 ·

(∑n
j=i+1Njxj∑n
j=i+1Nj

−
∑i

j=1Njxj∑i
j=1Nj

)
·∆xi

As a comparison, the continuous version of the weighting function w(x) is:

w(x) =
FX(x) · (1− FX(x))

σ2
X

{E(X | X > x)− E(X | X ≤ x)}
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The first term in the discrete weighting function
(∑i

j=1Nj

)(∑n
j=i+1Nj

)
matches with

FX(x) · (1− FX(x)) in the continuous weighting function. The second term in the discrete

weighting function
Σn

j=i+1Njxj∑n
j=i+1 Nj

− Σl
j=1Njxj∑i
j=1 Nj

matches with E(X | X > x) − E(X | X ≤ x) in the

continuous weighting function. Compared to the case with no duplicate observations, here both

the cumulative density and the conditional expected value are expressed in a weighted form.
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D Evidence from NELS

In the absence of any way to formally correct for potential measurement errors in AAFQT scores

in the NLSYs, in this appendix, we provide additional evidence from other data sources. We

use two nationally representative longitudinal data sets from the National Center for Education

Statistics (NCES), the National Education Longitudinal Study of 1988 (NELS:88) and the Ed-

ucational Longitudinal Study of 2002 (ELS:02). The NELS:88 cohort was first surveyed in 1988

as 8th graders and the ELS:02 cohort was first surveyed in 2002 as 10th graders. The NELS:88

cohort is 7–11 years older than the NLSY–97, and the ELS:02 cohort is 1–5 years younger than

the NLSY–97.

While the NCES datasets do not contain AAFQT scores, we use respondents’ math test

scores from the senior year of high school as a measure of cognitive skills, and the (log of)

hourly earnings eight years after high school as the wage measure.24 We choose the NELS:88

and the ELS:02 for a cross-cohort comparison because the tests in ELS:02 are adapted from

NELS:88 and they share many test items by design. Based on these shared test items and using

the IRT method, ELS:02 constructs a NELS-equated math score that basically tells how many

questions an ELS:02 student would have answered correctly had they taken the NELS:88 test.25

Table D.2 compares the 12th-grade math score distributions between the two NCES cohorts,

separately for white men and white women. From NELS:88 to ELS:02, the mean of math scores

has gone up while the distribution has become more left-skewed. As can be more clearly seen in

Figure D.1, there is also a hollowing out in the low-to-middle part of the math score distribution,

for both white men and white women. All of these patterns are also present in the evolution of

the AAFQT score distributions across the two cohorts in the NLSY, even though the cohorts in

the NLSY and NCES do not overlap.

That said, while there are important similarities between the math score distribution of the

NELSs and the AAFQT score distribution of the NLSYs, there are also differences. In particular,

we do not find an increasing mass of low math scorers in the ELS:02 as in the NLSY–97. It is

unclear, however, how much of this difference is due to different samples, different test formats,

or different test score construction processes.

24. Weinberger (2014) uses weekly earnings as the main labor market outcome measure. We use hourly earnings
to stay consistent with our baseline analysis of NLSY.
25. The IRT-based math score in NCES can be subject to measurement errors. But there is nothing to suggest

that measurement issues with IRT in the NCES would lead to exactly the same pattern of measurement error as
AAFQT scores in the NLSY–97.
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We examine how changes in the distribution of math scores across the two cohorts contribute

to changing OLS estimates of wage returns to math scores. To do this, in Table D.1, we first

present the OLS estimates of univariate regressions of log hourly earnings on math scores,

separately for white men and white women.

The wage returns to math scores are positive and significant for both cohorts and for both

men and women. Notably, the change in the OLS estimate across the two NCES cohorts

is statistically insignificant. If anything, there is an increase in the OLS estimate, which is

consistent with what Weinberger (2014) has documented by comparing NELS:88 with an older

cohort.

We then perform the Yithaki decomposition on the baseline OLS estimates. Figure D.2 plots

the Yithaki weights together with the smoothed local linear regressions and Figure D.3 plots

the cumulative contributions to OLS estimates, separately for the two NCES cohorts and for

white men and white women. First, the weights shift to the right across cohorts, but the shift

mainly happens for high math scorers as compared to low math scorers (especially for white

men). As we discussed in deriving the Yitzhaki decomposition, this is solely a mechanical result

of changes in the math distributions.

Second, the pairwise slopes show more nonlinearities for the sample of white men than

women, with flat regions in the mid-low range of the math score distribution. This is true for

both NCES cohorts, and is similar to what we found for AAFQT scores in the NLSY–97 (but

not in the NLSY-79). In contrast, the slopes seem broadly positive and linear for the sample of

white women in both NELS:88 and ELS:02, as with both cohorts of NLSY–97 data. Given that

the birth years of the two NCES cohorts span those of the NLSY–97, it is perhaps not surprising

that the wage returns to measured cognitive ability more closely match those in the NLSY–97

than those in the older NLSY cohort.

Regardless of the differences between the two data sources in the samples and in the measures

of cognitive abilities used, we find broad similarities in the evolution of cognitive test scores across

cohorts. We also find wage returns to measured cognitive ability in the NELS that are consistent

with the younger (and more similarly aged) NLSY–97. We read this additional evidence as

supporting the view that measurement error alone in AAFQT scores cannot be driving changes

in the test score distributions across NLSY cohorts, or associated changes in wage returns.
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Table D.1: Returns to 12th-grade Math Score, NELS:88 and ELS:02

White Men White Women

NELS ELS NELS ELS

Math 0.445*** 0.538*** 0.946*** 1.146***
[0.107] [0.132] [0.106] [0.134]

Change from NELS 0.092 0.200
[0.170] [0.171]

Obs 2474 2558 2461 2824

Note: We present OLS estimates of the wage returns to 12th-grade
math scores in a univariate regression. We present results separately
for NELS:88 and ELS:02, and for white non-Hispanic men and white
non-Hispanic women. We also present the estimated change in the
OLS estimates across cohorts. Sample weights are used. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table D.2: Distribution Statistics of 12th-
grade Math Score in NELS:88 and ELS:02

White Men White Women

NELS ELS NELS ELS

Mean 51.6 55.4 50.1 53.1
S.D. 14.1 13.6 13.6 12.6
Skewness 0.25 0.59 0.24 0.46
Kurtosis 2.07 2.60 2.19 2.49

p1 22.1 22 21.5 23.2
p5 27.5 28.7 26 29.3
p10 31.4 34.7 30.2 34.1
p25 40.9 46.9 40.3 45
p50 53.2 57.6 51 54.7
p75 63.7 65.9 61.3 62.9
p90 69.5 71.7 67.5 68.5
p95 72.2 73.8 70.3 71
p99 76 77 74.4 75.1

Note: We present the distribution statis-
tics for 12th-grade math scores separately
for NELS:88 and ELS:02, and for white
non-Hispanic men and white non-Hispanic
women. Sample weights are used.
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Figure D.1: Distribution of Math Score, NELS and ELS
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Note: In each figure, we plot the density of 12th-grade math scores separately for the two
cohorts. Sample weights are used.

Figure D.2: Smoothed Yitzhaki Weights and Slopes, NELS and ELS
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Note: In each figure, we overlay the smoothed Yitzhaki weights (right axis) with the
smoothed pairwise slopes (left axis), separately for the two cohorts. The smoothed curves
are estimated using Locally Weighted Scatterplot Smoothing (LOWESS) with a tricube
weighting function. Sample weights are used.
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Figure D.3: Cumulative Contribution to OLS, NELS and ELS
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Note: In each figure, we graph the progressive sum of the Yitzhaki decomposition, starting
with the lowest math score until the entire sum is calculated (producing the OLS estimate).
We use a bandwidth of 0.3 for smoothing. Sample weights are incorporated in the Yitzhaki
decomposition.
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E Tables and Figures for the Black and Hispanic Samples

Table E.1: OLS Estimates: By Gender and By Race and Ethnicity

White Black Hispanic

Men Women Men Women Men Women

Panel A: Univariate Regression

AAFQT 0.677*** 0.830*** 0.672*** 0.962*** 0.576*** 0.823***
[0.035] [0.036] [0.051] [0.044] [0.060] [0.054]

AAFQT * NLSY–97 -0.212*** -0.0407 -0.141 -0.176** -0.228** -0.257***
[0.055] [0.060] [0.086] [0.072] [0.094] [0.097]

Obs 3683 3679 1978 2156 1338 1373

Panel B: Control for Social and Non-cognitive Skills

AAFQT 0.605*** 0.761*** 0.592*** 0.911*** 0.460*** 0.676***
[0.036] [0.038] [0.054] [0.046] [0.062] [0.057]

AAFQT * NLSY–97 -0.153*** 0.00687 -0.0812 -0.134* -0.117 -0.104
[0.056] [0.061] [0.089] [0.077] [0.094] [0.098]

Obs 3683 3679 1978 2156 1338 1373

Note: We present OLS estimates of the wage returns to AAFQT scores, by gender and by race
and ethnicity. Panel A presents results for the regression of log wages on the AAFQT score, a
dummy variable for the NLSY–97 cohort, and their interaction term. Panel B further controls for
measures of non-cognitive skills and social skills (created by Deming (2017)) and their interactions
with the NLSY–97 dummy. Sample weights are used. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure E.1: Adjusted AFQT Distribution By Gender and By Race and Ethnicity
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Note: We plot the density of AAFQT scores by gender and by race and ethnicity. AAFQT scores are concorded
by Altonji et al. (2012). BLS custom sample weights are used.
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Figure E.2: Smoothed Yitzhaki Weights By Gender and By Race and Ethnicity

0
.0

2
.0

4
.0

6
Yi

tz
ha

ki
 w

ei
gh

t

75 100 125 150 175 200 225
AAFQT bin

White Non-Hispanic Men

0
.0

2
.0

4
.0

6
Yi

tz
ha

ki
 w

ei
gh

t

75 100 125 150 175 200 225
AAFQT bin

Black Non-Hispanic Men

0
.0

2
.0

4
.0

6
Yi

tz
ha

ki
 w

ei
gh

t

75 100 125 150 175 200 225
AAFQT bin

Hispanic Men

0
.0

2
.0

4
.0

6
Yi

tz
ha

ki
 w

ei
gh

t

75 100 125 150 175 200 225
AAFQT bin

White Non-Hispanic Women
0

.0
2

.0
4

.0
6

Yi
tz

ha
ki

 w
ei

gh
t

75 100 125 150 175 200 225
AAFQT bin

Black Non-Hispanic Women

0
.0

2
.0

4
.0

6
Yi

tz
ha

ki
 w

ei
gh

t

75 100 125 150 175 200 225
AAFQT bin

Hispanic Women

NLSY-79: binned NLSY-97: binned
NLSY-79: smoothed NLSY-97: smoothed

Note: We plot the Yitzhaki weights by gender and by race and ethnicity. The binned scatterplots are created
by summing up Yitzhaki weights in each bin, which contains three consecutive AAFQT points. The smoothed
curve is created using Locally Weighted Scatterplot Smoothing (LOWESS) with a tricube weighting function and
a bandwidth of 0.1. BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Figure E.3: Smoothed Yitzhaki Weights and Local Linear Regression By Gender and By Race
and Ethnicity
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Note: We overlay the smoothed Yitzhaki weights (right axis) with smoothed pairwise slopes (left axis), by gender
and by race and ethnicity. The smoothed curves are created using Locally Weighted Scatterplot Smoothing
(LOWESS) with a tricube weighting function. BLS custom sample weights are incorporated in the Yitzhaki
decomposition.
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Figure E.4: Cumulative Contributions to OLS Estimates By Gender and By Race and Ethnicity
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Note: We graph the progressive sum of the Yitzhaki decomposition, by gender and by race and ethnicity. We use
a bandwidth of 0.3 for smoothing. BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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